
The Myhill-Nerode Theorem and DFA Minimization

Myhill-Nerode Theorem

So far, we have encountered three necessary and sufficient conditions for determining whether a language L
is regular:

• There exists a DFA that recognizes L. (Original definition.)

• There exists an NFA that recognizes L. Proof: Any DFA can be converted to an equivalent NFA
(trivial), and any NFA can be converted to an equivalent DFA (power set construction).

• There exists a regular expression that describes L. Proof: Any RE can be converted to an equivalent
NFA (by induction), and any DFA can be converted to an equivalent RE (GNFA construction).

In this document, we state yet another necessary and sufficient condition for regular languages. It is called
the Myhill-Nerode Theorem. (The theorem can be found in pages 90-91 of Sipser, and its proof is on pages
98-99.) First, we need to set up some preliminary definitions.

Definition Let x and y be strings and let L be any language. We say that x and y are distinguishable by
L if some string z exists whereby exactly one of the strings xz and yz is a member of L; otherwise, for every
string z, we have xz ∈ L whenever yz ∈ L and we say that x and y are indistinguishable by L. If x and y
are indistinguishable by L, we write x ≡L y.

To put it another way, suppose we have a machine that recognizes language L by processing strings left-to-
right (not necessarily a DFA or NFA; it can be any type of automaton). Suppose it is given either string x
or string y as input, and afterward, it is given a suffix z. This is equivalent to asking the machine if xz and
yz are members of L. If strings x and y are indistinguishable by L, then after reading x or reading y, the
machine no longer needs to remember whether it read x, or whether it read y, in order to return the correct
accept/reject result. The result only depends on the suffix z. The machine only needs to remember that it
read either x or y without remembering which one specifically. If x and y are distinguishable by L, then the
machine must rely on its prior memory of whether it read x or y to return the correct result.

Definition Let L be a language and let X be a set of strings. Say that X is pairwise distinguishable by
L if every two distinct strings in X are distinguishable by L. Define the index of L to be the maximum
number of elements in any set that is pairwise distinguishable by L. The index of a language may be finite
or infinite.

Put another way, the index of a language L quantifies how much memory a machine needs to recognize
language L.

Myhill-Nerode Theorem A language is regular iff it has finite index.

Proof: If L is regular, it is recognized by some DFA with k states, and we can use this fact to show that its
index is at most k (and therefore finite). Conversely, if L is a language with a (finite) index of k, we can
recognize it with a DFA with k states. The details are on pages 98-99 of Sipser. ■

DFA Minimization

The Myhill-Nerode Theorem explicates an intuition you may have already developed when designing finite
automata: for regular languages, there is always a point while reading the input string left-to-right when

1

you can omit details about the symbols read so far and collapse that information into one of a finite number
of states. The theorem also implies that for any regular language, there is a unique DFA with a minimal
number of states (equal to the index of L) that recognizes it. This leads us to an efficient algorithm that
reduces the number of states in a DFA to the minimum possible number. It works by identifying equivalent
states according to the relation ≡L.

Minimizing the number of states in a DFA is desirable for a number of reasons. It can reduce the memory
requirements of state machines in embedded systems or in software. Conversions from REs and NFAs to
DFAs also result in an exponential blowup of the number of DFA states, so we can use DFA minimization to
find the optimal DFA. This kind of optimization is not generally possible for other computational models,
as we will see later.

We will perform the minimization procedure on the following DFA M , which recognizes the language L =
{ab, ba}∗.

q1 q2 q3 q7

q4 q5 q6 q8

a

b a

b

a

ba

b

a, b

a

b

a

b

a

b

Unreachable States

The first and simplest step in DFA minimization is to remove unreachable states. We can do this using
a standard graph traversal algorithm (e.g. breadth-first search or depth-first search), starting at the ini-
tial state, marking nodes and removing those that remain unmarked. Here is the pseudocode that would
implement this idea:

agenda← {q0}
visited← {q0}
while agenda is not empty do

remove state q from agenda
for each a ∈ Σ do

r ← δ(q, a)
if r ̸∈ visited then

add r to agenda
add r to visited

end if
end for

end while
remove all states not in visited

Using this algorithm on M would mark states {q1, q2, q3, q4, q5, q6} as visited and remove q7 and q8.

2

q1 q2 q3

q4 q5 q6

a

b a

b

a

ba

b

a, b

a

b

Merging Equivalent States

The next phase of DFA minimization involves identifying and merging equivalent states. Informally, two
states are equivalent if exactly the same set of strings leads the DFA to acceptance from either state. More
formally, states q and r are equivalent if, for any string x that ends in state q and any string y that ends in
state r, x ≡L y. We identify the minimal number of equivalence classes (and therefore the minimal number
of states) by iterating through string lengths starting from 0. We first process string of length 0 and see what
equivalence classes we can form. Then we increase the string length to 1 and split the existing equivalence
classes as necessary. We stop the algorithm when the equivalence classes do not change. Then, all states
that belong to the same equivalence class are merged into a single state.

We will define and go through a sequence of equivalence relations ≡0, ≡1, ≡2, Here q ≡i r means that
states q and r remain equivalent after processing a string of length i or less.

For ≡0 (when we have not read any symbols yet), we know that q ≡0 r iff q and r are both accept states, or
q and r are both not accept states (because they have the same accept/reject behavior upon reading a string
of length 0, which is ε). So there are two equivalence classes for ≡0: F and Q−F . Now we need to know how
to compute ≡i+1 from ≡i. The following lemma shows under what conditions two states within the same
equivalence class remain within that class after processing strings which are one character longer.

Lemma 1 For any q, r ∈ Q and any i ≥ 0, q ≡i+1 r if and only if

1. q ≡i r, and

2. for all a ∈ Σ, δ(q, a) ≡i δ(r, a).

When iterating over string lengths 1, 2, . . . , whenever there are two states for which Lemma 1 does not hold
when we go from length i to length i+1, we will separate those states into two classes. We will need to test
each pair of states within each equivalence class. Note that the second condition requires that the states are
equivalent for all input symbols a ∈ Σ. If it fails to hold true on any of them, then we must separate the
states into separate classes.

The state minimization algorithm can be summarized as:

set the equivalence classes for ≡0 to F and Q− F
for i = 0, 1, 2, . . . do

compute the equivalence classes of ≡i+1 from ≡i using Lemma 1
stop if ≡i+1 is the same as ≡i

end for

For DFA M , we have

≡0: Equivalence classes for ≡0: {q1, q3}, {q3, q4, q5, q6}

≡1: Unordered pairs in {q1, q3}:
{q1, q3}: δ(q1, a) = q2 ≡0 δ(q3, a) = q2 and δ(q1, b) = q4 ≡0 δ(q3, b) = q6 → q1 ≡1 q3

Unordered pairs in {q3, q4, q5, q6}:

3

{q2, q4}: δ(q2, a) = q5 ̸≡0 δ(q4, a) = q1 → q2 ̸≡1 q4
{q2, q5}: δ(q2, a) = q5 ≡0 δ(q5, a) = q5 but δ(q2, b) = q3 ̸≡0 δ(q5, b) = q5 → q2 ̸≡1 q5
{q2, q6}: δ(q2, a) = q5 ̸≡0 δ(q6, a) = q3 → q2 ̸≡1 q6
{q4, q5}: δ(q4, a) = q1 ̸≡0 δ(q5, a) = q5 → q4 ̸≡1 q5
{q4, q6}: δ(q4, a) = q1 ≡0 δ(q6, a) = q3 and δ(q4, b) = q5 ≡0 δ(q6, b) = q5 → q4 ≡1 q6
{q5, q6}: q5 ̸≡1 q4 ≡1 q6 → q5 ̸≡1 q6

Equivalence classes for ≡1: {q1, q3}, {q2}, {q4, q6}, {q5}

≡2: Unordered pairs in {q1, q3}:
{q1, q3}: δ(q1, a) = q2 ≡1 δ(q3, a) = q2 and δ(q1, b) = q4 ≡1 δ(q3, b) = q6 → q1 ≡2 q3

Unordered pairs in {q4, q6}:
{q4, q6}: δ(q4, a) = q1 ≡1 δ(q6, a) = q3 and δ(q4, b) = q5 ≡1 δ(q6, b) = q5 → q4 ≡2 q6

Equivalence classes for ≡2: {q1, q3}, {q2}, {q4, q6}, {q5} (No change, so the algorithm terminates.)

We merge states that are in the same equivalence classes, resulting in the following mimimal DFA:

{q1, q3} {q2}

{q4, q6} {q5}

a

b a

b

a

b

a, b

Acknowledgements

This document was based on an earlier document written by Dr. Marina Blanton.

4

