Homework 1: Strings and Languages

Due: Friday, January 21 at 11:59pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF. Please ensure that your work is legible.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
 - If you're making a complete submission, name it **netid-hw1.pdf**, where **netid** is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name it *netid*-hw1-123.pdf, where 123 is replaced with the problem numbers you are submitting at this time.
 - Submit your PDF file(s) in Canvas under Assignments > Homework 1: Strings and Languages.

Problems

- 1. For each language definition below, describe the language in English giving as concise a description as possible. List two strings that are in L and two that are not (if there are fewer than two strings in L or not in L, then list as many as possible). In all cases, the alphabet is $\Sigma = \{a, b\}$.
 - (a) $L_1 = \Sigma(\Sigma\Sigma)^*$ (1 point)
 - (b) $L_2 = \{a\} \Sigma^* \{a\} \cup \{a\} \Sigma^* \{b\}$ (1 point)
 - (c) $L_3 = \Sigma^* \Sigma^* \{ bb, ab \}$ (1 point)
 - (d) $L_4 = (\emptyset \cup \{\varepsilon\})^*$ (1 point)
 - (e) $L_5 = \{w \mid w \in \Sigma^* \text{ and exactly one prefix of } w \text{ ends in } \mathbf{a}\}$ (1 point)
 - (f) $L_6 = \{w \mid w \in \Sigma^* \text{ and all prefixes of } w \text{ end in } a\}$ (2 points)
 - (g) $L_7 = \{w \mid w \in \Sigma^* \text{ and } \forall u \in \Sigma^*(|w| \le |u|)\}$ (2 points)
- 2. Let $\Sigma = \{a, b\}$, and let $L = \{w \mid w \in \Sigma^* \text{ and } \forall u \in \Sigma^*(|w| \ge |u|)\}$. Prove that $L = \emptyset$. (3 points)
- 3. String z is a substring of w iff $\exists u, v \ [w = uzv]$. State whether each of the following statements is true or false, and prove your answer.
 - (a) For any two strings z and w, if z is a substring of w, then every substring of z is a substring of w. (3 points)
 - (b) For any two strings z and w, if every substring of z is a substring of w, then z is a substring of w. (3 points)
- 4. For any alphabet Σ , let **FINITE** be the set of all finite languages over Σ , and let

$$\mathsf{coFINITE} = \{L \mid \overline{L} \in \mathsf{FINITE}\}$$

(where, for any language L over Σ , \overline{L} is the complement of L, that is, $\Sigma^* - L$). For example, Σ^* is in **coFINITE** because its complement is \emptyset , which is finite. (Please think carefully about this definition, and note that **coFINITE** isn't the same thing as **FINITE**.)

- (a) Are there any languages over Σ in FINITE \cap coFINITE? Prove your answer. (3 points)
- (b) Are there any languages over Σ that are *not* in FINITE \cup coFINITE? Prove your answer. (3 points)