
Using the Pumping Lemma for Non-context-free Languages

Proof Structure

The Sipser textbook gives proofs showing that the following languages are not context-free:

• B = {anbncn | n ≥ 0}

• C = {aibjck | 0 ≤ i ≤ j ≤ k}

• D = {ww | w ∈ {0, 1}∗}

Below are some additional examples of proofs showing that a language L is not context-free. The
general structure of each proof is as follows (it looks very similar to the structure of proofs showing
that a language is not regular):

1. Assume to the contrary that L is a CFL, in which case it would have a pumping length p
with all the properties described by the pumping lemma for CFLs (Sipser p. 125).

2. Choose a string s ∈ L that is at least p symbols long. Depending on your choice of s, the
steps below may be easier, harder, or impossible. If it appears that your choice of s results
in a case that can always be pumped, try to select a new s that avoids the problem and try
again.

3. Identify all ways of selecting a pair of substrings v and y in s (so that s = uvxyz), subject to
the constraints |vy| > 0 and |vxy| ≤ p. Much of the work of the proof consists of identifying
these cases. It is essential that the cases you present in your proof are exhaustive, meaning
they truly cover all possible ways of selecting substrings v and y in s. The constraint |vy| > 0
means that v or y can be empty, but not both at the same time (the pumping lemma would
always be vacuously true otherwise). The constraint |vxy| ≤ p is very useful for limiting the
number of cases you need to consider, because although vxy may occur anywhere within s,
the v and y cannot be arbitrarily far apart, but must occur within a sliding window p symbols
wide.

(a) For each case of v, y, prove that there is a way of pumping it (up or down, your choice)
that results in a string not in L. For each case of v, y, you can pump in a different way;
that is, you do not need to pump up or pump down for all cases. See Sipser’s Example
2.37 for an example where pumping differently in each case is necessary.

4. Since all of the cases for v, y in s fail to be pumped in some way, L does not have a pumping
length, so it is not context-free.

Examples

1. L = {0n#02n#03n | n ≥ 0}

We will prove by contradiction that L is not context-free. Suppose that L is a CFL. Then it
has a pumping length p with all the properties described by the pumping lemma for CFLs. Let
s = 0p#02p#03p (setting n = p seems like a natural first choice, and in fact for this problem it
will work out well). The cases for partitioning s = uvxyz are as follows:

1



(a) At least one of v or y contains a #. Pumping down to uv0xy0z = uxz would delete at
least one # and result in a string with fewer than two #’s, which would not be in L. (We
could also choose to pump up to, say, uv2xy2z, in which case the string would have at
least one too many #’s.)

(b) Both v and y consist only of 0’s. Note that this is just the opposite of the above, so these
two cases combined are exhaustive. There are three main sections in s: the first 0p, the
middle 02p, and the last 03p. Because v and y do not contain #, each one must lie entirely
within one section. Together, v and y are in at most two different sections. If we pump
down to uxz, it will change the number of 0’s in one or two sections but not the third,
so the ratio of 0’s will be violated, and the string will not be in L.

Since the above cases are exhaustive and each case fails to be pumped in some way, L does
not have a pumping length p, so it is not context-free.

2. L = {anbman | n,m ≥ 0 and n ≥ m}

Whenever we have a language with inequality constraints, it is often useful to choose an s
that is right at the boundary of the constraints. There are languages where only a string at
the boundary will work, and there are other languages where the string doesn’t need to be
at the boundary to show that the pumping lemma fails. For this language, all strings at the
boundary fail the pumping lemma. Other strings in L fail the pumping lemma when m is
sufficiently large (at least p− 1).

Let s = apbpap. There are three main sections, and because |vxy| ≤ p, v and y can be in
sections 1 and 2, sections 2 and 3, but not sections 1 and 3. The cases are as follows:

(a) v or y straddles the boundary between two sections and contains both a’s and b’s.
Pumping up would result in a’s and b’s out of order. If is often useful to eliminate cases
where v or y straddle boundaries in this way to simplify your thought process for the
remaining cases.

(b) v or y contains at least one a from section 1. Because |vxy| ≤ p, neither v nor y can be
in section 3, so pumping down causes a mismatch between sections 1 and 3.

(c) v or y contains at least one a from section 3. Similarly to the previous case, pumping
down causes a mismatch between sections 1 and 3.

(d) v and y are both in section 2 and consist only of zero or more b’s (again, this case is just
the remainder of all of the cases above, so all cases combined are exhaustive). Pumping
up violates n ≥ m.

Because all the cases above fail, L is not context-free. Note that case (a) could actually be
eliminated, and the proof would still be correct.

3. L = {wtwR | w, t ∈ {a, b}∗ and |w| = |t|}

Intuitively, this language is not context-free because it requires us to match pairs of things
twice. With the power of CFLs, we can check that w matches wR, and we can check that
|w| = |t|, but we cannot do both. To choose a good s, first observe that making w and t
similar and with no pattern is not a good idea. Also, if t is symmetrical, the pumping lemma
is unlikely to fail regardless of w. For example, when s = apbpap, a careful analysis of the
cases for v and y shows that it can always be pumped when v = a and y = aa, because the
pumped string will always be symmetrical and the total length of the string will always be
a multiple of 3. Instead, we can choose s = apbpapbpbpap. It is not difficult to see that if we
pump up or down within any window of p symbols in s, the result will no longer be in the
language.

2



Acknowledgements

This document was based on an earlier document written by Dr. Marina Blanton.

3


